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The propagation of small amplitude disturbances in a permanent dipole lattice about an equilibrium con­
figuration which includes a steady electric and dipole field, parallel to one another, is considered. The 
governing dispersion relation is sixth order in o>2. Two of the six modes are degenerate. The remaining four 
split into two isotropic modes and two anisotropic modes. Specific forms are uncovered for these roots to­
gether with explicit relations for the components of the related twelve-dimensional state vector. 

I. INTRODUCTION AND SUMMARY OF RESULTS 

IN this paper we initiate a study of the disturbances 
which may propagate in an incompressible, cold, 

electroactive, dipole lattice. The term electroactive in­
dicates that the equilibrium configuration includes a 
steady electric field. Most previous investigations of the 
propagation of electromagnetic radiation through di­
electric media are either phenomenologically oriented 
or stem from a limited kinetic approach.1"3 The con­
straint of coldness, on the other hand, which implies 
that there be no spread in dipole orientation space in 
addition to the standard demand that there be no spread 
in velocity space, permits one to write down simplified 
nonphenomenological equations of motion. These equa­
tions are very similar to those used to investigate the 
modes of excitation of a magnetic dipole lattice in the 
limit of vanishing photon coupling and exchange 
energy4'5 (with the roles of magnetic and electric dipoles 
and fields interchanged). 

More directly the included theory is equally well 
suited for a cold incompressible uniform gas of perma­
nent dipoles. However, inasmuch as the constraint of 
uniformity of sites is more easily realized in a solid than 
in a gas, the present analysis is oriented toward the 
theory of solids. 

The state vector for the included system is twelve di­
mensional. Its components are the four vectors, dipole 
rotation velocity £2, dipole density n , electric field E, 
and magnetic field B. Owing to the cold-incompressible 
constraint, Newton's second law is decoupled from the 
complement of equations of motion in a manner such 
that the time development of the displacement vector 
is determined, granted that E and n are known. This 
equation is omitted in favor of the torque equation, 
which in the absence of any stress mechanism relates the 
time development of II to II and E only. 

The aggregate of equations so obtained is linearized 

1 P. Debye, Polar Molecules (Dover Publications, Inc., New 
York, 1929), cf. Chap. 5. 

2 C. P. Smyth, Dielectric Behavior and Structure (McGraw-
Hill Book Company, Inc., New York, 1955). 

3 A. R. von Hippel, Dielectrics and Waves (John Wiley and 
Sons, Inc., New York, 1954). 

4 C. Kittel, Quantum Theory of Solids (John Wiley & Sons, Inc., 
New York, to be published). 

5 L . Walker, Phys. Rev. 105, 390 (1957). 

about an equilibrium configuration which includes 
steady electric (Eo) and dipole-density (n0) fields, and 
zero rotation and magnetic vectors. A plane-wave 
analysis yields two classes of waves. The first class is 
isotropic while the second class is anisotropic and de­
pends on the angle between the propagation vector k 
and the steady electric field Eo. All waves are such that 
for any given frequency there are two characteristic 
speeds of propagation. 

More precisely, the emergent dispersion relation is 
sixth order in co2, this owing to (a) the time reversability 
(in present context: no friction) of the starting equa­
tions, and (b) each of the twelve scalar components of 
the state vector satisfies a first-order equation in time. 
Two of the six modes are degenerate (viz., a)2 = 0 twice). 
For the first root fin is constant with all other com­
ponents of the state vector vanishing, and for the second 
degenerate root (Eu/Ei)—(ku/ki) with all other com­
ponents vanishing. [The notation is such that com­
ponents with subscript [| are in the direction of E0, 
components with the subscript _L and superscript k are 
perpendicular to Eo and lie in the (Eo,k) plane; cf. 
Fig. 1.] 

The isotropic mode is quadratic in w2 and relates to a 
state vector with nonvanishing EL and 12/. For both 
frequencies large and small compared to 12 o most of the 
energy of this mode is concentrated in the electric field 
(as opposed to kinetic rotational energy). The natural 
frequency 120= (X*QEO2/nl)1/2, where x is electric sus­
ceptibility, n is number density, and / is moment of 
inertia of an elementary dipole. For frequencies close 
to 120 the energy of the mode is purely rotational. The 
index of refraction sketched as a function of 12 (cf. 
Fig. 2) readily indicates that only frequencies less than 
120 propagate undamped. The effect is analogous to the 
Faraday effect6 in magnetoactive conductive media. 
There the radiation field is absorbed in Larmor reso­
nance as opposed to the present instance where the 
radiation field is absorbed in electric-dipole resonance. 
The form of this isotropic dispersion relation is identical 
to the one uncovered by Born and Huang7 in a semi-

6 A. Sommerfeld, Optics (Academic Press Inc., New York, 
1954). 

7 M. Born and K. Huang, Dynamic Theory of Crystal Lattices 
(Oxford University Press, London, 1956), cf. Eq. (8-23), p. 94. 
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phenomenological theory of the propagation of waves in 
a dipole lattice. 

The anisotropic mode is also quadratic in co2 and re­
lates to nonvanishing [Exk,Eu,tii% Writing the index of 
refraction as a function of ca (cf. Fig. 4) again indicates 
the presence of a cutoff frequency. In the direction 0=0 
the anisotropic index of refraction reduces to the iso­
tropic index of refraction, with Eu = 0 and (Ex

k,Qi) re­
lated in the same manner as (Ei$ik) are related for the 
isotropic case, and with cutoff frequency increasing until 
finally at 6=T/2 the plane polarized wave E = (Euflfi) 
propagates transversely with the speed of light in 
vacuum. In this limit there is no torque on the equili­
brium dipoles so that they remain unperturbed. 

The wave speed written as a function of wave number 
k is double-valued, which for fixed k, gives rise to 
"fast" and "slow" waves. The wave normal surfaces 
of these dispersive waves are surfaces of revolution 
about the Eo axis (cf. Fig. 5). In the extreme of small 
wavelength the fast wave becomes an isotropic vacuum 
electrodynamic wave while the slow wave becomes a 
nonpropagating oscillation with frequency ~fio. For long 
wavelengths the slow wave propagates with the speed 
of light normal to the steady Eo field while the fast 
wave becomes an isotropic, purely oscillatory fluctuation 
with frequency fio(«)1/2, where K = 1 + X , is the specific 
inductive capacity. 

II . ANALYSIS 

1. Equations of Motion 

The equations of motion which govern a cold in­
compressible (permanent) dipole gas appear as: 

nIdii/dt=UxEy (1) 

du/dt=axn, (2) 
V xB=M0<m/d/+ (dE/dt)/c2, (3) 

V x E = - ( f f l / * . (4) 

Equation (1) is the torque equation. The rotation 
vector £1 is the angular velocity of an infinitesimal dipole 
element. The dipole strength per unit volume associated 
with the same element of media is n , while E and B are 
electric and magnetic field strengths, respectively. 

Dipole number density is n (it is constant) and / is the 
moment of inertia of an elemental dipole. Both kinetic 
and interparticle stress have been neglected in Eq. (1). 
Equation (2) is kinematical and ascribes the time rate of 
change II to rotation only. This is consistent with in-
compressibility and the fact that the elemental dipoles 
are permanent in the present model.8 However, the 
direction which the vector n assumes is, of course, 
grossly influenced by E. 

Equations (4) and (5) are Maxwell's equations ex­
cluding the presence of "true" charge. 

Newton's second law is conspicuous by its absence; 
however, it merely serves to introduce another fluid 
variable, i.e., the displacement which in turn is deter­
mined in time if II and E are known. The system (l)-(4) 
is a closed set and we will satisfy ourselves with the 
examination of this reduced set of equations. 

Specifically let us consider the perturbation solution 
to these equations about the equilibrium 

Eeq=Eo; neq=IIo, Qeq=0, Beq=0, (5) 

n0=e0xE0. 

The specific inductive capacity is x-
The perturbation variables (E,B,Q,n) satisfy the 

following equations, 

nldto/dt = eoxEo x E + I I x E0, (6) 

dnM=€ox&xEo, (7) 

c2V (V • E)-c2V2E+d2E/dP+ (d2Il/dt2)/eo=0. (8) 

2. Dispersion Relations 

The plane wave transform (viz., exp{ik«x—uat}) of 
the latter three equations appears as 

ico60xEoxE-r-eoxE0x ( f l x E 0 ) - A / Q = 0, (9) 

(^2-c2kk-co2)E+icoXE0x^ = 0. (10) 

The dyad kk operating on E gives k(k-E). In the 
representation in which Eo= (Eoftfi) and k= (kn,ki,0), 
the secular equation which Eqs. (9) and (10) gives 
appears as 

fin 
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5 If the dipoles were polarizable Eq. (2) would include a forcing term ~ E . 
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The frequency Oo has been written for 

tto2=eoxEo2/nI. (12) 

The notation9 is such that a _L subscript denotes 
a component perpendicular to both Eo and k. The X 
subscript combined with the k superscript appears on 
components perpendicular to Eo and in this plane of k 
and Eo. The vector £2 is sketched in this representation 
in Fig. 1. 

FIG. 1. The vector £1 in 
the Eo,k representation. 

Equation (11) indicates that the dispersion formula is 
twelfth order in co which relates to the fact that each of 
the four vectors (&,n,E,B) satisfy a first-order equa­
tion in time. Equation (11) when combined with Eqs. 
(8) and (4) determine the complete nature of the state 
vector r = (E,B,Q,n) for any of the six co2 roots. 

The first pair of roots co2=0 relates to a steady value 
of fin with all other components of r zero. 

The remaining roots separate into two classes. In the 
isotropic class, 

c2k2/u2 = n-xJ = l+[Xfio2/(fio2-co2)], (13) 

FIG. 2. The isotropic index of refraction as a function of co. 

FIG. 3. The isotropic index of refraction as a 
function of v2=UQ

2/c2k2. 

the inverse of which is given by 

2[co±
2A2^2]iSo=(l+^2) 1 ± 

4^2 -il/2-j 

(l + KV2)2-
(14) 

The specific inductive capacity K = 1 + X > and the non-
dimensional velocity v2=Qo2/c2k2. For this class of roots 
£lx

k and Ei are nonzero. Their ratio in this mode of ex-

FIG. 4. The anisotropic index of refraction for 
three different values of 0. 

citation is given by 

r X € 0 £ 2 n 1 / 2 _ £ i / % rl-(u2A20
2)-i 

H — ; — • (15) 
L cc/Q0 J 

9 ki has been written for kik. 

The electric and rotational fields are (w/2) radians out 
of phase for oo<£20, and — T/2 radians out of phase for 
co>120. For both a£>>12o and cô Cfio most of the energy of 
the mode is concentrated in the electric field (as opposed 
to kinetic rotational energy). 
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FIG. 5. Plane-wave speed versus 0; -f-=fast wave, — =slow 
wave. Dashed lines represent orientation of wave fronts at time 
c~l. at the inclination 0. 

The index of refraction as given by Eq. (13) is 
sketched in Fig. 2. 

It is quite clear that in this mode only frequencies less 
than fio propagate. In Fig. 3, n~2 is sketched as a func­
tion of v2=tto2/c2k2 with part of the image of the for­
bidden region of Fig. 2 shown (viz., "no propagation"). 
Some of the velocities which do not appear as solutions 
in Fig. 2 appear in Fig. 3 as the asymptotic segment of 
the positive branch. These are nonpropagating purely 
oscillatory roots: co2 = /cS2o2. These modes appear in the 
limit of vanishing wave number (large wavelengths). 
The concentration of field energy to rotational energy in 
this limit goes as | (1—K)/(K)1/2| whence most of the 
energy is in kinetic rotational form which is as expected. 

The remaining factor of the dispersion equation (11) 
governing the substate vector [£n,£j.,12i] is a cubic in 
co2, which in turn contains a co2 factor. The eigenvector 
which relates to this degenerate co2 = 0 mode is given by 

together with fix*, On, EL
h all equal to zero. These latter 

three components also vanish for the remaining aniso­
tropic modes which give rise to the index of refraction, 

1-
X ô2 cos20 

Oo2(l+xsin20)-co2 

The inverse (i.e., co as a function of k) appears as, 

2W±
2~2(a>±

2/c2k2)an 

4z;2(l+xsin260-i1/2i 

(17) 

: (1 + rf) H 1-
(1+KV2)2 • ] ) • (18) 

The eigenvector which corresponds to these modes of 
excitation is given by 

Ef/Ei ri-(co2AV)n 
L co/0o J 

(19) 

(20) 

Ox=0; [E„ /£J=[* i , /*x] , (16) 

This class of waves is purely transverse in the rotation 
field 12. The anisotropic index of refraction as given by 
Eq. (17) is sketched for three different values of 0 in 
Fig. 4. 

For propagation normal to the steady E0 field the 
equations become degnerate. One of the roots co2=/cfi0

2 

is nonpropagating and corresponds to the eigenvector 
(19), while the remaining root a>2 = c2k2 corresponds to 
En^ 0, Eik=tti=0. This latter root is the vacuum elec-
trodynamic mode; it is plane polarized, and purely 
transverse (recall that Ei = 0 also). 

3. Wave-Normal Surfaces 

It is instructive at this point to include a brief dis­
cussion of the surfaces formed by plotting the plane-
wave speed (oo/k) against 6 in polar coordinates. The 
complete three-dimensional locus of such speeds (wave-
normal surface) is then obtained by rotating this curve 
about the E0 axis. A sketch of the two anisotropic sur-

FIG. 6. Plane-wave speed versus 
0 in the two extremes k —* 0 and 
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faces ("fast" and "slow" waves) so formed is shown in 
Fig. 5. 

In these diagrams the functions fi± are given by 

^-K'-fe:)] ' 
In both extremes of vanishing and very large wave 

number the fast wave becomes isotropic. For small wave­
lengths the fast wave becomes the vacuum electro-
dynamic mode o)2=c2k2

y while for large wavelengths the 
fast wave collapses to the nonpropagating mode 
co2 = /cOo2. Similarly the slow wave, in the limit of small 
wavelengths, becomes a nonpropagating anisotropic 

I. INTRODUCTION 

SEVERAL workers1-4 have considered the "spin-
wave" excitations on the Bloch wall structure, both 

* Based on a thesis submitted in partial fulfillment of the 
requirements for the degree of Doctor of Science in Electrical 
Engineering at the Massachusetts Institute of Technology. This 
work was sponsored by the U. S. Office of Naval Research, the 
U. S. Army Signal Corps, and the U. S. Air Force. 

1 F. Boutron, Compt. Rend. 252, 3955 (1961). 
2 J. M. Winter, Phys. Rev. 124, 452 (1961). 
3 D. I. Paul, Phys. Rev. 126, 78 (1962). 
4 D. I. Paul, Phys. Rev. 131, 178 (1963). 

wave co2=120
2(l+x sin20), while in the limit of large 

wavelengths it becomes a propagating anisotropic wave 
(w2/&2)= (C2/K)(1+X sin20). These surfaces are sketched 
in Fig. 6. 
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in ferro- and antiferromagnetic systems. It appears to 
be generally true that there exist two types of these 
excitations: Those bound to the wall, corresponding to 
translation of the wall (these all tend to zero well into 
the domains); and those which tend to plane waves 
well into the domains, corresponding to precessional 
modes in the domain-wall (DW) configuration. Previous 
work with these excitations has been aimed at evaluat­
ing the contribution to the nuclear magnetic resonance 
linewidth due to the presence of the Bloch wall; the 
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Several workers have examined the enhancement of nuclear magnetic resonance within a Bloch wall, and 
have demonstrated the existence of both bound and free "spin-wave" excitations on the Bloch wall structure. 
The free states correspond to precessional excitations akin to ordinary spin-wave excitations, while the bound 
states form a convenient basis for the representation of domain-wall motion. We derive the spectrum of 
both types of excitations, including exchange, anisotropy, and dipole field contributions for an infinite uni­
axial ferromagnet. In contrast to earlier treatments, we treat the dipole field exactly (in the magnetostatic 
approximation), and show that this leads to a translational spectrum in which many states are degenerate 
with the "uniform translation," which is the translational mode excited by a uniform external magnetic 
field. The existence of such degeneracy is required for damping by imperfections to occur. The precessional 
spectrum is greatly different from the usual spin-wave spectrum, and, in particular, is not a symmetric func­
tion of k. The dipole fields lead to strong interactions, not conserving momentum, between the precessional 
modes; such interactions may explain the increase in ferromagnetic-resonance linewidth which is observed 
experimentally in the presence of a domain wall (in low dc magnetic fields). The motion of the domain wall, 
when it is bound to a certain position in the crystal by linear restoring forces, is studied by a Green's function 
technique. The domain-wall effective mass so obtained is identical to the expression given by Doring, and 
the domain-wall damping parameter proves to be simply related to the energy dispersion of the uniform 
translational mode. We calculate this energy dispersion due to scattering by the dipole fields, and due to 
"fluctuations," as used by Clogston et at. to explain the linewidth in disordered systems, such as the ferrites. 
The damping due to intrinsic scattering processes is proportional to T2, while the damping due to "fluctua­
tions" is essentially temperature-independent. In disordered systems, such as ferrite, the resonance line-
width and domain-wall damping due to "fluctuations" should agree to within a factor of order unity. The 
motion is not describable by the Landau-Lifshitz equation. This communication is intended to demonstrate 
that a formulation for the quantum-mechanical study of domain-wall motion exists, and has the properties 
necessary to explain the losses which occur during such motion; it is not intended to lead to any quantitative 
results which can be directly compared with experiment. We also consider the specific heat contribution due 
to the domain wall, and we find that this is proportional to T above about 10~2 °K. I t should be possible to 
observe such a specific heat contribution in YIG below 1°K. 


